A Fractional-Order Infectivity SIR Model

نویسندگان

  • Christopher N Angstmann
  • Bruce I Henry
  • Anna V McGann
چکیده

Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartments, with a power-law function in the infectivity. We show that this model can also be formulated as an infection-age structured Kermack-McKendrick integro-differential SIR model. Under the appropriate limit the fractional infectivity model reduces to the standard ordinary differential equation SIR model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fractional-Order Infectivity and Recovery SIR Model

The introduction of fractional-order derivatives to epidemiological compartment models, such as SIR models, has attracted much attention. When this introduction is done in an ad hoc manner, it is difficult to reconcile parameters in the resulting fractional-order equations with the dynamics of individuals. This issue is circumvented by deriving fractional-order models from an underlying stochas...

متن کامل

A Fractional Order Recovery SIR Model from a Stochastic Process.

Over the past several decades, there has been a proliferation of epidemiological models with ordinary derivatives replaced by fractional derivatives in an ad hoc manner. These models may be mathematically interesting, but their relevance is uncertain. Here we develop an SIR model for an epidemic, including vital dynamics, from an underlying stochastic process. We show how fractional differentia...

متن کامل

Square-Root Dynamics of a SIR-Model in Fractional Order

In this paper, we consider an SIR-model for which the interaction term is the square root of the susceptible and infected individuals in the form of fractional order differential equations. First the non-negative solution of the model in fractional order is presented. Then the local stability analysis of the model in fractional order is discussed. Finally, the general solutions are presented an...

متن کامل

Discretization of a fractional order ratio-dependent functional response predator-prey model, bifurcation and chaos

This paper deals with a ratio-dependent functional response predator-prey model with a fractional order derivative. The ratio-dependent models are very interesting, since they expose neither the paradox of enrichment nor the biological control paradox. We study the local stability of equilibria of the original system and its discretized counterpart. We show that the discretized system, which is...

متن کامل

A nonstandard finite difference scheme for solving‎ ‎fractional-order model of HIV-1 infection of‎ ‎CD4^{+} t-cells

‎In this paper‎, ‎we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells‎. ‎We study the effect of ‎the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of‎ ‎the presented model‎. ‎ ‎The nonstandard finite difference (NSFD) scheme is implemented‎ ‎to study the dynamic behaviors in the fractional--order HIV-1‎ ‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015